AttaNet: Attention-Augmented Network
for Fast and Accurate Scene Parsing

*denotes equal contribution

Abstract

overview

Two factors have proven to be very important to the performance of semantic segmentation models: global context and multi-level semantics. However, generating features that capture both factors always leads to high computational complexity, which is problematic in real-time scenarios. In this paper, we propose a new model, called Attention-Augmented Network (AttaNet), to capture both global context and multi-level semantics while keeping the efficiency high. AttaNet consists of two primary modules: Strip Attention Module (SAM) and Attention Fusion Module (AFM). Viewing that there is a significantly larger amount of vertical strip areas than horizontal ones in the natural images, SAM utilizes a striping operation to reduce the complexity of encoding global context in the vertical direction drastically while keeping most of contextual information, compared to the non-local approaches. Moreover, AFM follows a cross-level aggregation strategy to limit the computation, and adopts an attention strategy to weight the importance of different levels of features at each pixel when fusing them, obtaining an efficient multi-level representation. We have conducted extensive experiments on two semantic segmentation benchmarks, and our network achieves different levels of speed/accuracy tradeoff on Cityscapes, e.g., 71 FPS/79.9% mIoU, 130 FPS/78.5% mIoU, and 180 FPS/70.1% mIoU, and leading performance on ADE20K as well.

Training a network without and with SAM

SAM

wSAM

SAM generates more consistent segmentation inside large objects or along banded classes.

Training a network without and with AFM

wAFM

AFM can exploit more discriminative context for each class.